RDP: Remmina wird per Update brauchbar

Kleiner Nachbrenner zu RemoteDesktop mit XRDP & XFreeRDP . Vor einigen Tagen gab es ein Update von Remmina, womit es zum fast idealen RDP Clienten unter Linux wird.

Remmina wird per Update brauchbar

Vor einigen Tagen gab es ein Update von Remmina und da ich das schon im Test hatte, es aber mangels Funktion nicht einsetzbar war, habe ich Euch xFreeRDP empfohlen. Das ist auch weiterhin der Favorit, wenn  es verscriptet werden muß.am sieht im Hintegrund bereits den eingeloggten RDP Desktop und im Vordergrund die Basiseinstellungen von Remmina für diese Verbindung.

Remmina hat aber mit dem Update den Schritt auf meine Festplatte geschafft, weil es nämlich in seiner brauchbaren GUI-Oberfläche für jede Verbindung auch gleich einen SSH Tunnel anbietet. Da man auch einen Gatewayserver mit angeben kann, sind selbst komplexe RDP Setups kein größeres Problem mehr, wenn, ja wenn das Wörtchen Wenn nicht wäre.man sieht das Konfiguratiosnfenster von Remmiona das sich mit SSH Optionen beschäftigt.

Es gibt leider keine brauchbare, geschweige denn, belastbare Doku aus den man den Sinn dieser Optionen erfährt. Die Webseite zeigt zudem Screenshots, die schon lange überholt sind. Auch gibt es dort Anleitungen, die mangels der passenden Optionen nicht mehr klappen können, dafür sind Optionen ohne Contexthilfe, Mouseovertext oder sonstiger Hilfe vorhanden.

Das macht natürlich keinen so guten Eindruck. Auch wenn xFreeRDP  keine UI hat, stimmt hier wenigstens die Manpage.  Im Vollbildschirm ist gibt es eine schöne intelligente Leiste, die sich reinrollt, wenn man den Mauszeiger darüber bewegt. Die gleiche Funktionalität kennt man von TeamViewer oder der Windows-RDP Clienten. Daher kann ich das Programm jetzt zwar als sehr brauchbar einstufen, aber benutzerorientiert geht leider anders. Ich bin aber überzeugt, daß es auch ohne (aktuelle) Bedienungsanleitung gerade im Adminbereich viele Anhänger finden wird und schon hat(wie man so lesen kann). Der Verbindungsmanager ist halt unheimlich praktisch.

Neue Platte automatisch entschlüsseln lassen

Ich hab eine neue Platte im PC und die soll sich natürlich beim Hochfahren automatisch ins System integrieren, wenn ich das Passwort kenne. Leider klappt das mit den Automatiken nicht so ganz, daher müssen wir da kurz Hand anlegen.

Automatisch LUKS-Platten beim Boot einbinden

Zunächst brauchen wir mal eine mit LUKS verschlüsselte Platte. Um eine Platte mit LUKS zu verschlüsseln eignet sich das Laufwerketool. Die zu formatierende Partition auswählen und auf „Partition formatieren“ klicken:

man sieht die erste Formatierungsseite im LaufwerketoolIhr geht den neuen Namen für die Platte an, damit meldet die sich dann später im System, und wählt „Passwortgeschützter Datenträger (LUKS)“  aus. Ggf. habt Ihr die Wahl zwischen LUKS und LUKS2, aber F30 hat die noch nicht. Wenn ja, nehmt ruhig LUKS2.

Man sieht, wie das Passwort eingegeben wird.Ein ordentlich langes Passwort ist Pflicht. Danach dürft Ihr das noch einmal bestätigen und ein paar Sekunden später die Platte mit Hilfe des Lazy-Inits bereits bereit. „Lazy-Init“ meint, daß die Platte dort formatiert wird, wo Daten geschrieben werden sollen und nicht jetzt gleich die ganze Platte von Vorn bis Hinten formatiert wird. Das hätte nämlich bei 8TB 23 Stunden gedauert, da hatte ich wirklich keine Lust zu 😉

Die UUID ermitteln

Zwei Möglichkeiten eröffnen sich Euch: Ihr fragt das Laufwerkstool nach der UUID der neuen Platte ( Luks-Teil ) oder Ihr bemüht „blkid“ in der Konsole. Da wir diese eh gleich brauchen, bietet sich das an:

Erstmal ROOT werden:

$ su

dann suchen wir uns die UUID raus:

# blkid|grep sdd
/dev/sdd: UUID=“c16596bf-b40d-4c57-a46d-93b98d4bac47“ TYPE=“crypto_LUKS“

„sdd“ ist hier meine Platte. Eine UUID ist eine einmalige ID ( daher das zweite U ) die aufgrund eines einheitlichen Verfahrens ( das erste U ) erzeugt wird. Mehr müßt ihr darüber eigentlich nicht wissen.

Nun nehmen wir die UUID und tragen das passend in /etc/crypttab und /etc/fstab ein:

$ echo „/dev/mapper/luks-c16596bf-b40d-4c57-a46d-93b98d4bac47 /media/Huge ext4 defaults,x-systemd.device-timeout=0 1 2″ >>/etc/fstab

Da es sich um ein LUKS Laufwerk handelt und Devmapper das für uns managen wird, tragen wir den Devmapperpräfix und die UUID als Laufwerkspfad ein. „/media/Huge“ ist der Mountpoint, den Ihr bei Euch ggf. vorher noch anlegen müßt. Natürlich könnt Ihr auch einen anderen Pfad dafür nehmen, müßt Ihr wissen. Für alle Einsteiger: Der Mountpoint ist nichts weiter als ein leeres Verzeichnis. Das kann liegen wo Ihr wollt, aber /mnt/directory oder /media/directory  bieten sich an. Wichtig ist, daß da nichts anderes gemountet ist und der Pfad nicht in einem anderen Mountpoint ist.

Beispiel:

/media/Small
/media/Bigger
/media/Huge

ext4“ ist das Filesystem. Ihr werdet gemerkt haben, daß nach dem Formatieren der LUKS Partition ein weitere Partition unter der LUKS-Partition aufgetaucht ist. Da liegen Eure Daten dann wirklich drin. Das sieht so aus:

am sieht die Anzeige einer Luks-Partition gefolgt von der dadrin befindlichen normalen PartitionDiese Partition muß von Euch jetzt auch erst noch formatiert werden, dann natürlich passend zu dem Eintrag in der /etc/fstab, den wir gerade besprochen haben. Nehmt einfach Ext4, könnt Ihr praktisch nichts falsch machen. Wie Ihr sehen könnt, bekommt diese Partition eine eigene neue UUID. Aber das muß Euch jetzt nicht weiter belasten.

Damit die Platte jetzt auch beim Booten entschlüsselt wird und damit das Mounten/Einhängen des Laufwerks überhaupt erst möglich wird, tragt Ihr die UUID noch in die /etc/crypttab ein:

echo „luks-c16596bf-b40d-4c57-a46d-93b98d4bac47 UUID=c16596bf-b40d-4c57-a46d-93b98d4bac47 none“ >> /etc/crypttab

Das wars schon. Beim nächsten Booten ist die Platte dann sofort verfügbar.

„Keine Panik!“

Ok, eine freundliche Schriftart habe ich jetzt auf die Schnelle nicht zur Hand und großer geht es auch nicht, aber falls Ihr mal etwas vergessen oder Euch vertippt habt und Euer System nicht bootet.. KEINE PANIK!

Das löst sich ganz einfach:

1. den PC von einer USB-LIVE Disk booten.
2. Das Laufwerketool starten.
3. Eure Systempartition ggf. erst entschlüsseln und dann direkt im Tool mounten/einhängen.
4. TERMINAL öffnen
5. „su“ eingeben

6. „blkid“ eingeben
7. UUID in /etc/fstab und /etc/crypttab  vergleichen
8. Tippfehler beheben und Rechner neu booten.

99% aller Fehler in dem Bereich sind Vertipper oder man hat es schlicht und ergreifend nicht abgespeichert 🙂

XRDP und das screen-Tool

Ihr wisst noch, daß man nicht so genau hinsehen sollte, wenn man mehr Freizeit haben will? 😉 Den Grundsatz habe ich mal wieder bei RDP ignoriert und bin prompt in die Falle getappt.

XRDP, die Session und das screen-Tool

Wer von Euch weiß, was PID 1 ist? Ok, eine rhetorische Frage, jeder weiß das. Für die, die das vergessen haben, kleine Auffrischung:

Der erste Prozess, der beim Start des PCs erstellt wird, hat die Process-ID 1 ( PID ). Jeder andere Prozess danach, ist ein Kind(Child) vom Prozess mit PID 1. Der Prozess ist also das Elternteil(Parent) von dem gestarteten Prozess. Beim Systemd-Init-System heißt der PID 1 Prozess sinnigerweise „systemd“, beim Vorgänger System-V  wars noch „init“.

Beispiel:

systemd(1)-+-ModemManager(1300)-+-{ModemManager}(1352)
           |                    `-{ModemManager}(1354)
           |-NetworkManager(1319)-+-{NetworkManager}(1360)
           |                      `-{NetworkManager}(1362)

Hier im Beispiel, ist systemd(1) der Eltern-Prozess und ModemManager(1300) und NetworkManager(1319) sind die Kinder-Prozesse. Wenn der Rechner runtergefahren wird, terminiert der PID1 Prozess alle seine Kinder-Prozesse und wenn keins mehr da ist, beendet er sich selbst, in dem er der HW das Strom-Aus-Kommando sendet.

Merke: Alle Prozesse sind Kinder oder Kinds-Kinder von PID1, weil das eine baumartige Struktur ist.

Wer sich das mal selbst ansehen will: einfach „pstree -up | less“ in ein Terminalfenster eingeben.

Was passiert, wenn der Elternprozess eines Kindes terminiert wird und dieser Elternprozess nicht PID1 ist?

Im Beispiel oben, terminieren wir mal gedanklich den NetworkManager(1319) der ja 1360 und 1362 als Kinder hat. Was jetzt passiert ist, daß die Kinder-Prozesse als Waisen dem PID1 übertragen werden. Sie bekommen also einen neuen Eltern-Prozess, aber sonst ändert sich nichts: Sie laufen i.d.R. weiter.

Es gibt auch Situationen, wo das nicht der Fall ist, aber die lassen wir mal aus.

Ich merke gerade ich muß weiter ausholen, sonst verstehen das nicht alle Leser, daher nicht wundern, wenn alles etwas schlicht gehalten ist und es einem trotzdem wie eine Wüstenwanderung ohne Wasser vorkommt.

Der Benutzer meldet sich an

Stellen wir uns vor, Systemd hat das System(PC) soweit hochgefahren, daß uns am Monitor eine Anmeldemaske(Login-Dialog) begrüßt. Wenn der Benutzer einloggt(sich anmeldet), wird die Desktop-Session gestartet, das kann z.b. Gnome, Cinnamon oder sonst eine andere Deskopumgebung sein. Die Startet dann wieder Programme bis so eine Arbeitsoberfläche entstanden ist, wie man die von Fotos kennt:

Ein GNOME Remotearbeitsplatz mit laufendem VideoEs laufen jetzt rudelweise Prozesse im Namen des Benutzers:

systemd(1)-+-ModemManager(1300)-+-{ModemManager}(1352)
          ...
           |-csd-printer(2448,marius)-+-{csd-printer}(2449)
           |                          `-{csd-printer}(2450)
           |-cupsd(1364)
           |-dbus-broker-lau(1276,dbus)---dbus-broker(1277)
           |-dbus-daemon(5007,marius)---{dbus-daemon}(5011)
           |-dbus-daemon(5153,marius)---{dbus-daemon}(5154)
           |-dbus-daemon(5282,marius)---{dbus-daemon}(5283)
           |-dbus-daemon(5868,marius)---{dbus-daemon}(5869)
           |-dbus-daemon(8160,marius)---{dbus-daemon}(8161)
           |-dbus-daemon(12280,marius)---{dbus-daemon}(12281)
           |-dbus-daemon(27861,marius)---{dbus-daemon}(27862)
           |-dconf-service(5201,marius)-+-{dconf-service}(5202)
           |                            `-{dconf-service}(5203)
           |-dconf-service(5330,marius)-+-{dconf-service}(5331)
           |                            `-{dconf-service}(5332)
           |-dconf-service(5372,marius)-+-{dconf-service}(5378)
           |                            `-{dconf-service}(5379)
           |-dconf-service(5924,marius)-+-{dconf-service}(5925)
           |                            `-{dconf-service}(5926)
           |-dconf-service(12329,marius)-+-{dconf-service}(12330)
           |                             `-{dconf-service}(12331)
           |-dconf-service(28004,marius)-+-{dconf-service}(28007)
           |                             `-{dconf-service}(28008)
          ...

und die sind, wie man oben sehen kann, Kinder vom PID1. Die „Ausreißer“-Prozesse die auch laufen, wenn sich kein Benutzer anmeldet, habe ich mal rot markiert. Die gehören i.d.R. root oder einem Servicebenutzer „nobody“,“www-data“,“mysql“ so in der Art. Die werden gleich wichtig.

Wenn der Benutzer sich ausloggt

Kommen wir zu dem Punkt, wo sich der Benutzer aus dem PC ausloggt. Der Abmelden-Vorgang(Logout) stößt eine Kaskade an, die alle Benutzerprozesse terminiert. Wenn keine anderen Prozesse mehr laufen, dann terminiert sich der PID1 auch. I.d.R. ist das aber nicht der Fall, weil Root ja auch ein ganzes Rudel an Diensten gestartet hat, die alle Kind von PID1 sind.

Screen

Wenn man auf verschiedenen Servern zu tun hat, kommt man unweigerlich an den Punkt, wo man Programme laufen lassen muß die tage- oder wochenlang laufen müssen (ggf. auch ewig) oder man muß einfach zwischenzeitlich mal weg und will den Arbeitsstand den man erreicht hat nicht verlieren.

Einen Desktop-PC würde man einfach nicht abschalten und als Benutzer nur den Bildschirm sperren. Wenn man sich aber doch mal als anderer Benutzer an dem PC anmelden muß, und die Programme trotzdem nicht beendet werden sollen, kommt „screen“ ins Spiel.

Dies startet man in einer Konsole bevor man mit der Arbeit anfängt. Wenn man sich auf einem entfernten Server per SSH anmeldet, ist es oft der einzige Weg, wie man sicherstellen kann, daß ein Verbindungsverlust nicht im Desaster endet. Screen kann man aber natürlich auch in einem Desktop-Terminal starten.

Ich kann also als Benutzer meinem PC auch in einer Screensitzung längerfristig mit Aufgaben versorgen, mich dann ausloggen oder Bildschirm sperren und per SSH von Zuhause aus nachsehen, ob die Prozesse noch laufen oder schon fertig sind. Da jeder mit der richtigen Berechtigung eine Screensitzung betreten kann, kann ich dann also auch von Zuhause aus an der Stelle weiter machen, wo ich aufgehört habe.

Wenn ich das nur in einem Terminalfenster als eingeloggter Desktopbenutzer mache, kann ich das nicht tun, da man das Terminal nicht von außen betreten kann.

Damit dürfte die Idee hinter Screen klar sein:

Screen starten, Programme arbeiten lassen, die Benutzersitzung am Desktop oder per SSH beenden und dann später von irgendwo anders fortsetzen.

Jetzt kommt XRDP ins Spiel

Nun hatte ich einen PC bei einer Firma, den ich per getunneltem RDP von außen mit einer Desktop-Session benutzt habe und wollte die stundenlange Kopieraktion in einer Screensitzung laufen lassen und mich dann ausloggen. RDP hat das Problem, daß man nicht gleichzeitig per RDP und am Bildschirm eingeloggt sein kann.

Also muß man die Remote-RDP-Sitzung beenden, falls man am Bildschirm einloggen muß, weil der Job so lange lief, daß man schon wieder im Büro ist.  Das passiert öfters als man glauben mag.

Wenn man das tut, vertraut man darauf, daß man ja screen gestartet hatte und der Prozess noch da ist, wenn man wieder ins Büro kommt. War er aber nicht.

Ta Ta Daaaaaaa !!!

Eine per XRDP gestartete Desktop-Session bekommt nämlich einen eigenen systemd Prozess als Startprozess, genau wie der PC beim hochfahren auch, nur das dieser systemd Prozess keine anderen Dienste gestartet hat und daher alle seine Kinderprozesse terminiert, wenn die Sitzung endet… auch Screen!

Beispiel:

systemd(1)-+-ModemManager(1300)-+-{ModemManager}(1352)
           |                    `-{ModemManager}(1354)
           |-NetworkManager(1319)-+-{NetworkManager}(1360)
           |                      `-{NetworkManager}(1362)
	  ...
           |-gnome-terminal-(5111,marius)-+-bash(5412)---screen(13881)---screen(13882)---bash(13883)-+-less(14632)
           |                              |                                                          `-pstree(14631)
          ...
           |-systemd(5996,remote)-+-(sd-pam)(6006)
           |                             |-abrt-applet(6657)-+-{abrt-applet}(6671)
           |                             |                   |-{abrt-applet}(6672)
          ...
           |                             |                       `-{evolution-calen}(7037)
           |                             |-evolution-sourc(6381)-+-{evolution-sourc}(6383)
           |                             |                       |-{evolution-sourc}(6384)
           |                             |                       `-{evolution-sourc}(6385)
           |                             |-gnome-shell-cal(6374)-+-{gnome-shell-cal}(6378)
           |                             |                       |-{gnome-shell-cal}(6380)
           |                             |                       |-{gnome-shell-cal}(6432)
           |                             |                       |-{gnome-shell-cal}(6433)
           |                             |                       `-{gnome-shell-cal}(7050)
           |                             |-gnome-terminal-(11250)-+-bash(11424)---screen(21255)---screen(21326)---bash(21331)---les+
           |                             |                        |-{gnome-terminal-}(11277)
           |                             |                        |-{gnome-terminal-}(11278)
           |                             |                        `-{gnome-terminal-}(11310)
          ...

In dem Auszug oben seht Ihr den Unterschied:

systemd(1) -> systemd(????) -> gnome-terminal -> bash -> screen

statt:

systemd(1) -> gnome-terminal -> bash -> screen

Da systemd(????) (die ???? stehen für eine beliebige PID) nach dem Logout keine Prozesse von „anderen“ Benutzer gestartet hat, terminiert er sich auch selbst, was dann in Folge auch das Screen noch terminiert.

In der Desktopkette (in grün) bleibt der systemd (1) Prozess stehen, weil noch andere Prozesse von anderen Benutzern laufen (inkl. root), deswegen wird Screen dann nicht terminiert und läuft weiter.(denkt dran, einfache Darstellung 🙂 )

Am Beispiel von SSH schön zu sehen:

|-sshd(20153)-+-sshd(21640)—sshd(21661)—bash(21671)—screen(22867)—screen(22881)—bash(22882)

wird zu

|-screen(22881)—bash(22882)

Merke:

Wenn Du per XRDP eingeloggt bist und screen benutzen willst, melde Dich lokal per SSH an, starte dann screen und arbeite damit.

Es klingt bescheuert, weil man von Screen genau erwarten würde, daß es weiterläuft, aber es passiert halt nicht, weil der das screen in der Konsequenz startende Prozess ( systemd(????) ), alles terminert, weil er selbst terminieren will/muß.

Ich befürchte wir bekommen Pöttering nicht dazu, dafür eine Ausnahme in systemd einzubauen und müssen damit leben.